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Introduction. Many years ago I was motivated by adventures in the laboratory
to pose this question:1

Given that the angular velocity ωωω and angular momentum (spin) SSS of
a rigid body stand in this familiar relationship

SSS = Iωωω : I is the symmetric moment of inertia matrix

what is the maximal angle that ωωω and SSS can subtend?

My solution of that problem hinged on a simple geometrical construction
(described below) which, as I subsequently discovered, was original not to me
but to Christian Otto Mohr (), who had himself built upon a suggestion of
Karl Culmann (). That Culmann and Mohr were concerned not with the
dynamics of tops but with stress analysis and the fracture of brittle materials2
—and yet managed to anticipate me—can be a source of no deep surprise; the
equation yyy = M xxx (M symmetric) is so primitive, and encountered in so many
physical settings, that interesting remarks derived from the structure of that

1 See classical gyrodynamics (), pp. 92–106.
2 Culmann (–) was a German professor of civil engineering who

is remembered today mainly for his contributions—some of which had been
anticipated by Maxwell—to “graphical statics.” Mohr (–) taught civil
engineering first in Stuttgart and then (from  until his retirement in ) in
Dresden. He was said by his student A. Föppl (who himself figures importantly
in the history of electrodynamics, and whose texts influenced the development
of the young Einstein) to have been an outstanding teacher: a tall, proud and
taciturn man who spoke and wrote with simplicity, clarity and conciseness.
“Mohr’s stress circle”known—provided the basis for his theory of stress failure;
for an account of the “Coulomb-Mohr fracture criterion” see (for example) C.
C. Mei, Mathematical Analysis in Engineering (), p. 150.
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equation are destined to be repeatedly rediscovered, and pressed into service in
a great variety of applications.3

Two circumstances motivate my return to this topic:

The “density matrix” (which in recent literature is more properly called
the “density operator”)

ρρρ =
∑∫

|ψν)pν(ψν | : the pν are probabilities, and sum to unity

serves in orthodox quantum mechanics to describe a “mixture” of quantum
states |ψν), which (since no orthogonality or linear independence requirement
attaches to the concoction of such mixtures) may be either finite or discretely/
continuously infinite in number, but which I will assume collectively span a
finite-dimensional subspace Hn in the space H of states. The density matrix is
manifestly hermitian, so admits of unique spectral representation

ρρρ =
n∑

k=1

|k)ρk(k|

But the latter expression can be considered to describe a mixture of finitely
many orthogonal states. In some previous work4 I was led thus to the realization
that an element of ambiguity attaches to the “mixed state” concept; distinct
mixtures can give rise to the same density matrix ρρρ, and have therefore to be
considered physically equivalent. The question now arises: How does one most
informatively describe (i.e., how does one understand) the conditions under
which ostensibly distinct mixtures which are, in this sense, “equivalent”? When
this question was posed to Tom Wieting he provided—almost instantly—an
elegant response which is, however, special to the case n = 2. My efforts to
generalize “Wieting’s construction” have at several points acquired the scent
of Mohr’s construction, which I review now with these questions foremost in
mind:
• Can Mohr’s construction be used to construct a generalizable reformulation

of Wieting’s construction? If not,
• Can Mohr’s construction be used to establish that (and why) Wieting’s

construction does not admit of generalization?

Oz Bonfim has directed my attention to a paper5 which is of interest to him
in connection with his own research, and which—when scanned with squinted
eyes, and to my predisposed nose—has again the “scent of Mohr’s construction.”
I have secondary interest in discovering whether that hunch can be supported.

3 For an electrodynamical application, having nothing at all to do either with
tops or with fracture, see my classical electrodynamnics (), p. 127.

4 “Status and some ramifications of Ehrenfest’s theorem” (), §9.
5 S. Habib & R. D. Ryne, “Symplectic Calculation of Lyapunov Exponents,”

Phys. Rev. Letters 74, 70 (1995).
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Those two lines of motivation have one feature in common: each requires
some enlargement of the setting within which Mohr’s construction is usually
contemplated. The organization of my remarks will reflect my desire to render
that process—“enlargement of the setting”—as smooth and natural as possible.

1. Point of departure: Mohr’s construction in the 2-dimensional case. One
natural approach to the “top problem” posed earlier would be to (i) go to
the principal axis frame of the body (with respect to which the moment of
inertia matrix is diagonal), (ii) let ωωω assume all possible orientations, and (iii)
study the placement, relative to ωωω, of

SSS =




a 0 0
0 b 0
0 0 c



ωωω as ωωω ranges over the ω-sphere

Alternatively—and for present purposes more usefully—one might (i) assign ωωω
any convenient fixed value, (ii) let the body (which is to say: the principal axis
frame) assume all possible orientations with respect to some fixed frame, and
(iii) study the relative placement of

SSS = R–1




a 0 0
0 b 0
0 0 c



 R ·




ω
0
0



 as R ranges over O(3) (1)

It becomes in this light natural to look, by way of preliminary orientation, to
this dimensionally reduced analog of the preceding problem: study the relative
placement of

SSS = R–1

(
a 0
0 b

)
R ·

(
ω
0

)
as R ranges over O(2) (2)

and it is the latter problem that gives rise to Mohr’s construction in its most
familiar form.

It is interesting to note in passing that what I have called elsewhere6 the
“method of dimensional reduction” is inapplicable to the theory of tops. Only
in the 3-dimensional case does rotational kinematics lead to a “angular velocity
(psuedo) vector;” only in that case is the angular momentum concept captured
by a construction of the design rrr × ppp. The physicists of Flatland may have
instructive things to say about the fracture of brittle materials (if such can
even exist in two dimensions), but their theory of tops is a pallid affair: a
“theory of wheels.” One can, however, recover (2) from (1) by confining ωωω to
the plane normal to the 3rd principal axis; i.e., by considering the 2-dimensional
problem to be a constrained instance of the 3-dimensional problem.

6 “Electrodynamics in 2-dimensional spacetime” ().
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We have

R–1

(
a 0
0 b

)
R =

(
cos θ − sin θ
sin θ cos θ

)T (
a 0
0 b

) (
cos θ − sin θ
sin θ cos θ

)

=
(

a cos2 θ + b sin2 θ (b − a) cos θ sin θ
(b − a) cos θ sin θ b cos2 θ + a sin2 θ

)

and, drawing upon the identities cos2 = 1
2 (1 + cos 2θ) and sin2 = 1

2 (1− cos 2θ),
obtain

=

(
1
2 (a + b) + 1

2 (a − b) cos 2θ − 1
2 (a − b) sin 2θ

− 1
2 (a − b) sin 2θ 1

2 (a + b) − 1
2 (a − b) cos 2θ

)
(3)

≡ M(θ)

which I will—for lack of any standard terminology, and since it lies at the
algebraic heart of Mohr’s construction—call the “Mohr matrix;” it is, in the
present application, just the moment of intertia matrix, referred to an
arbitrarily-oriented frame,7 but in other applications (Mohr’s own, for example)
acquires other interpretations. I will return in a moment to discussion of some
of the distinctive properties of Mohr matrices.

As θ ranges on [0, 2π] the vector

sss(θ) ≡ M(θ) ω̂ωω with ω̂ωω ≡
( 1

0

)

=

(
1
2 (a + b) + 1

2 (a − b) cos 2θ
− 1

2 (a − b) sin 2θ

)
(4)

traces a closed curve on the s-plane; specifically, it traces—twice!—a circle, the
so-called “Mohr circle,” shown in Figure 1.

It is clear from the figure, and illustrative of its utility, that

σ ≡ maximal angular separation between sss(θ) and ω̂ωω

= arcsin
{ 1

2 (a − b)
1
2 (a + b)

}
(5)

and that maximality is achieved when cos(π − 2θmax) = − cos 2θmax = a−b
a+b ,

which entails

sin2 θmax =
a

a + b
and cos2 θmax =

b

a + b

Every real symmetric 2×2 matrix M =
(A

C
C
B

)
is latently a “Mohr matrix,”

and can be brought to “Mohr form” by inverted use of Mohr’s construction,
as described by Figure 2. The resulting compass-&-ruler construction of the
spectrum and eigenvectors of M is in some respects reminiscent of a spectral
estimation technique (more familiar to engineers than to physicists) which
derives from “Gers̆gorin’s theorem.” For details, see an appendix to the
classical gyrodynamics notes cited previously.

7 I cannot write I(θ) because I is a reserved symbol
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AB θ

ω

s θ( )

Figure 1: Graph of (4), drawn in the presumption that a > b > 0.
The “Mohr circle” is traced by sss(θ) as θ ranges on [0, 2π]; it is, that
is to say, traced (twice) by

sss ≡ R–1
(a

0
0
b

)
R ·

( 1
0

)
as R ranges over O(2)

The circle is centered at (a+b
2 , 0), has radius a−b

2 , and intercepts the
horizontal axis at points s1 = a and s1 = b which mark the obvious
eigenvalues of the “Mohr matrix” M ≡ R–1

(a
0

0
b

)
R.

B Aθ

a

b

c

Figure 2: Compass-&-ruler construction of the spectral properties
of M =

(A
C

C
B

)
. One uses Mohr’s construction “backwards” to read

off the eigenvalues a and b and the angular parameter θ that fixes
the locations of the associated eigenvectors:

Meee1 = aeee1 with eee1 = R–1
( 1

0

)
=

(+ cos θ
− sin θ

)

Meee2 = beee2 with eee2 = R–1
( 0

1

)
=

( + sin θ
+ cos θ

)
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We note in passing that “rotating a vector ωωω with respect to a fixed blob” is
the same as “counterrotating the blob with respect to a fixed vector,” and that
this simple fact accounts for the sense of the angular advancement in Mohr’s
construction, as I have presented it.

Working from (3) we have

M(θ) = aP1 + bP2 (6)

where

P1 ≡ 1
2

(
1 + cos 2θ − sin 2θ
− sin 2θ 1 − cos 2θ

)
(7.1)

P2 ≡ 1
2

(
1 − cos 2θ + sin 2θ

+ sin 2θ 1 + cos 2θ

)
(7.2)

are seen to comprise a complete system of orthogonal projection operators:

P1 + P2 = I , P1· P2 = O , and
{

P2
1 = P1

P2
2 = P2

(8)

The right side of (6) achieves the “spectral resolution” of M(θ), but conceals
no deep mystery: the spectral resolution of

(a
0

0
b

)
is trivial

(
a 0
0 b

)
= a

(
1 0
0 0

)
+ b

(
0 0
0 1

)

and one has only to multiply that equation by R–1 on the left and R on the
right to recover precisely (6). From

trP1 = trP2 = 1

we learn that P1 and P2 project onto one-dimensional spaces; in fact

P1 projects onto the eee1-ray
P2 projects onto the eee2-ray

}
(9)

and both can be recovered as instances of the general proposition that if eee ≡
(p

q

)

is a unit vector then the projector onto the eee-ray can be described
(pp

qp
pq
qq

)
. All

such projectors are, by the way, manifestly symmetric. We observe finally that
P1 can be written

P1 = 1
2

{
I + p1S1 + p2S2

}
(10)

with

ppp ≡
(

p1

p2

)
≡

(
+ cos 2θ
− sin 2θ

)
, S1 ≡

(
1 0
0 −1

)
and S2 ≡

(
0 1
1 0

)
(11)



First approach to the density matrix problem 7

and that ppp −→ −ppp sends P1 −→ P2 ⊥ P1:

P2 = 1
2

{
I − p1S1 − p2S2

}
(12)

While it might seem most natural to associate projectors P with the vectors
eee onto which they project, we have at (10) been led to assign P a vectorial
“address” ppp which is distinct from eee. The distinction is signaled by the presence
of certain factors of 2. Clearly we have been led to a kind of “toy instance”
of the SU(2) representation of O(3), and it is with Pauli matrices in mind
(“sigma matrices”) that—lacking a double-stroke version of σ—I have adopted
my S notation.

In Figure 3 I show the Mohr constructions associated with the equations

sss1(θ) = P1(θ)ω̂ωω and sss2(θ) = P2(θ)ω̂ωω

My several attempts to illustrate the geometrical mechanism by which

sss(θ) = asss1(θ) + bsss2(θ)

reproduces Figure 1 were all too confusingly complex to be useful, but it was
that very failure which led me to the realization that a simple “complexification
trick” (see the caption of Figure 3) reduces the point at issue almost to a
triviality: if we make the associations

sss1(θ) ←→ z1(θ) ≡ 1
2 (1 + e−2iθ)

sss2(θ) ←→ z2(θ) ≡ 1
2 (1 − e−2iθ)

it is then immediate that

sss(θ) ←→ z(θ) = az1(θ) + bz2(θ) = a+b
2 + a−b

2 e−2iθ

2. First approach to the density matrix problem. We were led just above to
• associate projectors P with points on the “unit Mohr circle” (Figure 3)
• associate points on the “unit Mohr circle” with complex numbers

and to the observation that weighted sums of projectors (of which we have so
far considered only one—exceptionally simple—single instance) are thus made
susceptible to analysis as weighted sums of complex numbers. Enlarging upon
that observation, we look to symmetric matrices (toy density matrices) of the
design

D =
∑

k

wkPk

where the weights wk are positive real numbers subject (we may without loss
of generality assume) to the constraint

∑
k wk = 1. From

D ←→ weighted set of points on the unit Mohr circle

we are led to write
D =

∑

k

wk
1
2

{
1 + e−2i(θ+αk)

}
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θ
ω

s θ( )


s θ( )


Figure 3: Superimposed Mohr constructions associated with the
equations

sss1(θ) = P1(θ)ω̂ωω and sss2(θ) = P2(θ)ω̂ωω

It is geometrically evident, and easy to prove analytically, that

sss1(θ) ⊥ sss2(θ)

It becomes natural to associate the s-plane with the complex plane,
writing

sss1(θ) ←→ z1(θ) ≡ 1
2 (1 + e−2iθ)

sss2(θ) ←→ z2(θ) ≡ 1
2 (1 − e−2iθ)

But
∑

wke−2iαk = re−2iα with 0 ≤ r ≤ 1 so (writing ϑ ≡ θ + α) we have this
“Mohr representation” of D

D = 1
2 (1 + re−2iϑ) (13)

and this “spectral representation:”

D = w · 1
2 (1 + e−2iϑ) + (1 − w) · 1

2 (1 − e−2iϑ) (14)
|
w ≡ 1

2 (1 + r)

These results are illustrated in Figures 4 & 5. They arise from what I consider
to be a “non-standard application of Mohr’s construction,” and cast in new
light—I am not yet prepared to say in improved light—the essence of “Wieting’s
construction,” at least as it pertains to our toy density matrices.
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Figure 4 goes here

Figure 4: Weighted points decorate the unit Mohr circle. Each
represents a weighted projector wkPk. Their “center of mass” lies
at the point re−2iϑ representative of the symmetric density matrix
D =

∑
wkPk. The associated Mohr circle crosses the horizontal

axix at points which mark the

eigenvalues of D = 1
2 (1 ± r)

Clearly, diverse weighted distributions can share the same center of
mass; diverse mixtures can give rise to the same density matrix.

Figure 5 goes here

Figure 5: “Spectral representation” of the preceding D-matrix. The
projectors stand diametrically opposite one another, and (therefore)
project onto orthogonal vectors. From the “teeter-totter condition”
w(1 − r) = (1 − w)(1 + r) we obtain w = 1

2 (1 + r).
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3. General principles preliminary to generalization. Let xxx, yyy, . . . be real column
vectors

xxx =





x1

x2

...
xn



 , etc.

let G be an invertible n × n matrix, and agree to write
{
xxx, yyy

}
≡ xxxTG yyy (15)

Imposition of a requirement that the linear transformation xxx → Txxx preserve
curly brackets {

Txxx, Tyyy
}

=
{
xxx, yyy

}
: all xxx and yyy (16)

entails
TTGT = G i.e., T–1 = G–1TTG (17)

Assume it possible to write
T = eL (18.1)

where L is the “logarithm” of T, and subject to the proviso that

T → I entails L → O (18.2)

Then
det T = etrace L (19)

which serves to sharpen the condition (det T)2 = 1 implicit in (17); the same
argument, run backwards, informs us that in real theory the condition

trace L = 0 (20)

is in fact universal: “improper” T-matrices—those with det T = −1 (the only
other possibility)—do not possess logarithms. From the multiplicative condition
(17) we obtain the additive condition

GL + LTG = O (21)

Look now to the (spectrum-preserving) similarity transformation

M −→ M ′ ≡ T –1MT (22)

By (17) we have
GM ′ = T T· GM · T (23)

from which it becomes clear that

if GM is
{

symmetric
antisymmetric

}
then so also is GM ′ (24)
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From this bland stock we can make several kinds of soup, depending upon
what additional ingredients and seasoning we toss into the pot. Let us, before
we proceed any further, agree in place of the generic

{
•, •

}
to

write
{

(•, •) when G is symmetric: GT = +G
[•, • ] when G is antisymmetric: GT = −G

and to restrict our attention to those two complementary cases. In place of (21)
we then have this sharper statement:

GL is
{

antisymmetric if G is symmetric
symmetric if G is antisymmetric (25)

Look to the simple Euclidean case

G =
(

1 0
0 1

)
: symmetric

In that case T (called R) by (17) satisfies R–1 = R T; it preserves the value of
(xxx, yyy) = xxxTyyy and is called a “rotation matrix.” Its logarithm L (called A) is by
(25) literally antisymmetric; writing

A = θ

(
0 −1
1 0

)

one by quick calculation obtains

R = eA =
(

cos θ − sin θ
sin θ cos θ

)

I need not rehearse the familiar details, but do want to emphasize that it was
precisely that body of detail—especially this instance8 of (24):

R –1 · symmetric · R = symmetric

—that led us in §1 to Mohr’s construction.

4. Mohr’s construction in the 2-dimensional Lorentzian case. Look now to the
(only slightly less familiar) Lorentzian case

G =
(

1 0
0 −1

)
: symmetric (but indefinite)

8 Curiously, we did not have occasion to draw upon the companion statement

R –1 · antisymmetric · R = antisymmetric

but for this there is a good explanation: the matrix on the right is the same
matrix; nothing is going on; antisymmetric matrices are invariant with respect
to rotational similarity transformation. A similar remark pertains to (27.2)
below.
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The antisymmetry of GL forces L itself to assume the form

L = ψ

(
0 1
1 0

)

and by a slight variant of the “quick calculation” to which I just referred9 one
obtains the “Lorentz matrix”

T =
(

coshψ sinhψ
sinhψ coshψ

)
(26)

where in the relativistic application the parameter ψ—sometimes called the
“rapidity”—acquires kinematic meaning from the equation tanhψ = β ≡ v/c.
Equation (24) asserts that

(lorentz)–1·
(

a c
−c b

)
· (lorentz) = matrix of that same structure (27.1)

=
(

A C
−C B

)

(lorentz)–1·
(

0 d
d 0

)
· (lorentz) = unchanged 8 (27.2)

where by computation we find

A = a cosh2 ψ − b sinh2 ψ + 2c coshψ sinhψ

B = b cosh2 ψ − a sinh2 ψ − 2c coshψ sinhψ

C = (a − b) coshψ sinhψ + c (cosh2 ψ + sinh2 ψ)

which with the aid of some elementary identities

cosh2 ψ = 1
2 (cosh 2ψ + 1)

sinh2 ψ = 1
2 (cosh 2ψ − 1)

2 coshψ sinhψ = sinh 2ψ

become
A = a+b

2 + a−b
2 cosh 2ψ + c · sinh 2ψ

B = a+b
2 − a−b

2 cosh 2ψ − c · sinh 2ψ

C = a−b
2 sinh 2ψ + c · cosh 2ψ





(28)

In the argument which led to (3) we drew tacitly upon the familiar fact that
every real symmetric matrix

(a
c

c
b

)
can be diagonalized by rotation. Equation

(28) exposes a less familiar fact: the Lorentzian diagonalization of a matrix of
the “Lorentz symmetric” structure

( a
−c

c
b

)
entails tanh 2ψ = − 2c

a−b , and this

9 See classical electrodynamics (), p. 196.
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can (with real ψ) be achieved if an only if −1 ≤ − 2c
a−b ≤ +1. The latter

condition can conveniently be formulated

∆ ≥ 0 with ∆ ≡
(

a−b
2

)2 − c2 (29)

We note in this connection that the eigenvalues of
( a
−c

c
b

)
can be described

λ1 = a+b
2 +

√(
a−b
2

)2 − c2 : becomes a as c2 ↓ 0

λ2 = a+b
2 −

√(
a−b
2

)2 − c2 : becomes b as c2 ↓ 0





(30)

and are
• imaginary if ∆ < 0;
• coincident if ∆ = 0;
• real and distinct if ∆ > 1.

I am concerned here with certain geometrical constructions, and it is hard to
draw diagrams when things become imaginary, so it is to the class of cases
(29) that I henceforth restrict my remarks. Within such a restricted setting it
becomes possible to mimic the derivation of (3), writing

M(ψ) ≡ (lorentz)–1·
(

a 0
0 b

)
· (lorentz) =

(
A C

−C B

)
(31.1)

with
A = a+b

2 + a−b
2 cosh 2ψ

B = a+b
2 − a−b

2 cosh 2ψ

C = a−b
2 sinh 2ψ





(31.2)

Borrowing terminology from relativity, I will say that a vector

xxx is






timelike
null

spacelike




 according as (xxx,xxx) ≡ xxxTG xxx is

{
> 0
= 0
< 0

Less standardly, I will say that

xxx is a
{

timelike unit vector
spacelike unit vector

}
if

{
(xxx,xxx) = +1
(xxx,xxx) = −1

Proceeding in imitation of Mohr, we (in a notation which has now to be
considered vestigal) have

sss1(ψ) =
(

s11(ψ)
s12(ψ)

)
≡ M(ψ)ω̂ωω1 with ω̂ωω1 ≡

( 1
0

)
: timelike unit vector

=
(

A
−C

)
=

( a+b
2 + a−b

2 cosh 2ψ
− a−b

2 sinh 2ψ

)
(32.1)

sss2(ψ) =
(

s21(ψ)
s22(ψ)

)
≡ M(ψ)ω̂ωω2 with ω̂ωω2 ≡

( 0
1

)
: timelike unit vector

=
(

C
B

)
=

(
+ a−b

2 sinh 2ψ
a+b
2 − a−b

2 cosh 2ψ

)
(32.2)
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where we have been obliged to write a duplex variant of (4) because the timelike
and spacelike sectors of vector space are transformationally distinct.10

Eliminating ψ between the first pair of equations gives an equation of the
form

(
s1 − a+b

2

)2 − s2
2 = ∆

∆ ≡
(

a−b
2

)2

while elimination between the latter pair gives

(
s2 − a+b

2

)2 − s2
1 = ∆

These equations describe a pair of hyperbolas, of which
• the first is centered at (a+b

2 , 0) and opens left/right;
• the second is centered at (0, a+b

2 ) and opens up/down;
But in each case, one branch is spurious, an artifact of the ψ-elimination
procedure; the sss1(ψ) given by (31.1) glides along the right/left branch according
as a−b

2 ≷ 0, and (when ψ = 0) crosses the axis at s1 = a, while the sss2(ψ) given
by (31.2) glides along the lower/upper branch according (again) as a−b

2 ≷ 0,
and crosses the axis at s2 = b. See Figure 6.

To what extent can the train of thought which flowed from (6) be carried
over into the Lorentzian setting? Does “spectral resolution” remain available
as a tool? If

xxx =
(

x1

x2

)

then the “projector onto the xxx-ray” can be described

P = 1
(xxx,xxx) ·

(
x1x1 x1x2

x2x1 x2x2

)
where

(
x1

x2

)
≡ G

(
x1

x2

)
=

(
x1

−x2

)

We have
(

coshψ
sinhψ

)
: representation of all “timelike unit vectors”

(
sinhψ
coshψ

)
: representation of all “spacelike unit vectors”

and notice that the former is orthogonal (Lorentzian sense) to the latter. The
projector onto the timelike

( cosh ψ
sinh ψ

)
-ray can be described

P1 = +
(

cosh2 ψ − coshψ sinhψ
sinhψ coshψ − sinh2 ψ

)

= 1
2

(
1 + cosh 2ψ − sinh 2ψ

+ sinh 2ψ 1 − cosh 2ψ

)

10 In the interest of expository clarity I have elected to omit discussion of the
case sss(ψ) = Mωωωnull.
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Figure 6 goes here

Figure 6:

Figure 7 goes here

Figure 7:



16 Non-standard applications of Mohr’s construction

while the projector onto the spacelike
( sinh ψ

cosh ψ

)
-ray becomes

P2 = −
(

sinh2 ψ − sinhψ coshψ
coshψ sinhψ − cosh2 ψ

)

= 1
2

(
1 − cosh 2ψ + sinh 2ψ
− sinh 2ψ 1 + cosh 2ψ

)

These matices (compare (7)) are demonstrably projective (P2
1 = P1, P2

2 = P2),
orthogonal (P1 · P2 = O) and complementary (P1 + P2 = I). And each
possess the (additively closed) Lorentz-symmetric structure of

( a
−c

c
b

)
. Having

established those elementary facts, I find it convenient in the application at
hand11 to

flip from prograde to retrograde parameterization: ψ −→ −ψ

i.e., to modify the definitions of P1 and P2, writing

P1 ≡ 1
2

(
1 + cosh 2ψ + sinh 2ψ
− sinh 2ψ 1 − cosh 2ψ

)
: projects onto timelike

( cosh ψ
− sinh ψ

)

P2 ≡ 1
2

(
1 − cosh 2ψ − sinh 2ψ

+ sinh 2ψ 1 + cosh 2ψ

)
: projects onto spacelike

( − sinh ψ
cosh ψ

)

Then (31) becomes
M(ψ) = aP1 + bP2 (33)

which precisely mimics (6). We observe that (compare (10)) P1 can be written

P1 = 1
2

{
I + p1 S1 + p3 S3

}
(34)

with

ppp ≡
(

p1

p3

)
≡

(
cosh 2ψ
sinh 2ψ

)
, S1 ≡

(
1 0
0 −1

)
and S3 ≡

(
0 1

−1 0

)
(35)

and that ppp −→ −ppp sends P1 −→ P2. The vector ppp ranges on the right branch
(and its negative on the left branch) of a hyperbola which is centered at
the origin of the (p1, p3)-plane, and which opens left/right; it is, in all cases
(i.e., for all ψ), a timelike unit vector. See Figure 7.

It becomes natural to consider a “Lorentzian analog of the density matrix
problem.” Distribute weighted points on the “unit Mohr hyperbola,” associate
such a distribution with a weighted sum of projectors, and ask for the “spectral
representation” of the resulting matrix:

given D =
∑

k

wk Pk, achieve the display aP1 + bP2

11 Recall from §1 that the Mohr construction proceeds from a presumption
that “blobs counterrotate.”
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If all the points lie on the same branch of the unit Mohr hyperbola then (as
is clear from the figure) the centroid of the distribution will lie necessarily in
the timelike sector, and a Lorentzian analog of Wieting’s construction becomes
immediately available. But if points are distributed on both branches then
the centroid may lie in the spacelike sector , and the possibility of spectral
representation (at least along the lines of the present discussion, which presumes
∆ ≥ 0) is lost. I lack physical motivation to pursue this matter in greater detail.


